Loading...
Header Logo
Keywords
Last Name

Ravi Nandan Singh, Ph.D.

TitleAssociate Professor
InstitutionWake Forest School of Medicine
DepartmentCancer Biology
Address
vCardDownload vCard

    Collapse Biography 
    Collapse education and training
    Harvard University, Cambridge, MAB.A.06/1995Physics
    University College London, London, UKPh.D.05/2008Pharmaceutical Science
    Collapse awards and honors
    2011 - 2012Postdoctoral Fellow of the Year, Wake Forest University
    2011Fellowship to attend AACR/NCI Cancer Imaging Workshop , Wake Forest School of Medicine
    2010 - 2015NIH/NCI K99/R00 Howard Temin Pathway to Independence Award in Cancer Nanotechnology , Wake Forest School of Medicine
    2009Fellowship to attend AACR/NCI Pathobiology of Cancer Workshop
    2008 - 2010NIH/NCI T32 Postdoctoral Training Fellowship in Cancer Biology, Wake Forest School of Medicine
    2007Best Oral Presentation, University College London
    2006International Liposome Society Young Investigator Award, University College London

    Collapse Overview 
    Collapse overview
    My interdisciplinary background in biomedical nanotechnology, a field lying at the interface of biomedicine, chemistry, physics and materials science, brings together ideas and techniques from these disciplines. By studying and manipulating the bio-nano interface, I work to facilitate the translation of proof of principle experiments into clinical applications of well-defined materials for cancer therapy and diagnostic use. Most recently, my group showed that carbon nanotubes can be used to target breast and brain tumors, deliver genes and cancer therapeutics, and that appropriately functionalized carbon nanotubes are safe for blood born delivery. Additionally, we demonstrated that unmodified silver nanoparticles act as a self-therapeutic agent with a combination of selective cytotoxicity and radiation dose-enhancement effects toward triple negative breast cancer at doses that are nontoxic to noncancerous breast and other cells. I am dedicated to developing new tools to improve outcomes for cancer treatment and diagnosis.


    Collapse Research 
    Collapse research activities and funding
    K99/R00CA154006     (Ravi Singh)Aug 1, 2010 - Feb 28, 2015
    NIH/NCI
    Tumor Targeting and Diagnostic Applications of Glycosylated Nanotubes
    Role Description: The major goal of this project is to develop a carbon nanotube-based PET imaging agent targeted to glucose transporters for early detection of breast cancer.
    Role: PI

    K99CA154006     (SINGH, RAVI N)Aug 25, 2010 - Jul 31, 2012
    NIH/NCI
    Tumor Targeting and Diagnostic Applications of Glycosylated Nanotubes
    Role: Principal Investigator

    R00CA154006     (SINGH, RAVI N)Aug 25, 2010 - Jul 31, 2015
    NIH/NCI
    Tumor Targeting and Diagnostic Applications of Glycosylated Nanotubes
    Role: Principal Investigator

    Institutional Development Grant     (Nicole Levi-Polyachencko)Jun 1, 2015
    North Carolina Biotechnology Center
    Advanced instrumentation for pre-clinical evaluation of magnetic nanoparticle heating
    Role Description: This award is for a purchasing a DM100 Series Magnetic Hyperthermia Device for use to induce and thermally image of magnetic hyperthermia in vivo.
    Role: Co-I

    Wake Forest Innovations Ignition Funds     (Ulrich Bierbach)Jan 1, 2016 - Dec 31, 2016
    Wake Forest Innovations
    In vivo assessment of novel liposomal formulations of platinum-acridine chemotherapy
    Role Description: The objective is to determine the maximum tolerated dose, biodistribution and in vivo efficacy of nanoparticle formulations of new platinum-based chemotherapeutic agents for treatment of breast, lung and pancreatic cancer.
    Role: Co-I

    Brain Tumor SPORE Development Grant     (Ravi Singh)Apr 1, 2016 - Mar 31, 2017
    Comprehensive Cancer Center of Wake Forest University
    Image guided delivery of nanoparticles for drug delivery and enhanced photothermal therapy
    Role Description: The objective is to perform initial synthesis and in vivo testing of a multimodal, carbon nanotube platform for image-guided drug delivery and photothermal therapy of glioblastoma multiforme.

    R01CA207222     (SINGH, RAVI N)Apr 1, 2017 - Mar 31, 2022
    NIH/NCI
    Development of a novel therapeutic agent that exploits specific vulnerabilities in claudin low breast cancer
    Role: Principal Investigator

    Collapse Bibliographic 
    Collapse selected publications
    Publications listed below are automatically derived from MEDLINE/PubMed and other sources, which might result in incorrect or missing publications. Faculty can login to make corrections and additions.
    List All   |   Timeline
    1. Yoo KW, Li N, Makani V, Singh RN, Atala A, Lu B. Large-Scale Preparation of Extracellular Vesicles Enriched with Specific microRNA. Tissue Eng Part C Methods. 2018 11; 24(11):637-644. PMID: 30306827.
      View in: PubMed
    2. Lu P, Li H, Li N, Singh RN, Bishop CE, Chen X, Lu B. MEX3C interacts with adaptor-related protein complex 2 and involves in miR-451a exosomal sorting. PLoS One. 2017; 12(10):e0185992. PMID: 28982131.
      View in: PubMed
    3. Fahrenholtz CD, Swanner J, Ramirez-Perez M, Singh RN. Heterogeneous Responses of Ovarian Cancer Cells to Silver Nanoparticles as a Single Agent and in Combination with Cisplatin. J Nanomater. 2017; 2017. PMID: 30034459.
      View in: PubMed
    4. Eldridge BN, Xing F, Fahrenholtz CD, Singh RN. Evaluation of multiwalled carbon nanotube cytotoxicity in cultures of human brain microvascular endothelial cells grown on plastic or basement membrane. Toxicol In Vitro. 2017 Jun; 41:223-231. PMID: 28285150.
      View in: PubMed
    5. Zheng Y, Fahrenholtz CD, Hackett CL, Ding S, Day CS, Dhall R, Marrs GS, Gross MD, Singh R, Bierbach U. Large-Pore Functionalized Mesoporous Silica Nanoparticles as Drug Delivery Vector for a Highly Cytotoxic Hybrid Platinum-Acridine Anticancer Agent. Chemistry. 2017 Mar 08; 23(14):3386-3397. PMID: 28122141.
      View in: PubMed
    6. Hu Y, Singh R, Deng Z, Mintz A, Hsu W. Liposome-protamine-DNA nanoparticle-mediated delivery of short hairpin RNA targeting brachyury inhibits chordoma cell growth. Journal of Biomedical Nanotechnology. 2016; 12(10):1952-1961.
    7. Fahrenholtz CD, Ding S, Bernish BW, Wright ML, Zheng Y, Yang M, Yao X, Donati GL, Gross MD, Bierbach U, Singh R. Design and cellular studies of a carbon nanotube-based delivery system for a hybrid platinum-acridine anticancer agent. J Inorg Biochem. 2016 12; 165:170-180. PMID: 27496614.
      View in: PubMed
    8. Singh R, Gupta SC, Peng WX, Zhou N, Pochampally R, Atfi A, Watabe K, Lu Z, Mo YY. Regulation of alternative splicing of Bcl-x by BC200 contributes to breast cancer pathogenesis. Cell Death Dis. 2016 06 09; 7(6):e2262. PMID: 27277684.
      View in: PubMed
    9. Eldridge BN, Bernish BW, Fahrenholtz CD, Singh R. Photothermal therapy of glioblastoma multiforme using multiwalled carbon nanotubes optimized for diffusion in extracellular space. ACS Biomater Sci Eng. 2016 Jun 13; 2(6):963-976. PMID: 27795996.
      View in: PubMed
    10. Stuart CH, Singh R, Smith TL, D'Agostino R, Caudell D, Balaji KC, Gmeiner WH. Prostate-specific membrane antigen-targeted liposomes specifically deliver the Zn(2+) chelator TPEN inducing oxidative stress in prostate cancer cells. Nanomedicine (Lond). 2016 05; 11(10):1207-22. PMID: 27077564.
      View in: PubMed
    11. Eldridge BN, Bernish BW, Fahrenholtz CD, Singh R. Photothermal therapy of glioblastoma multiforme using multiwalled carbon nanotubes optimized for diffusion in extracellular space. American Chemical Society: Biomaterials and Interfaces. 2016; 6(2):963-976.
    12. Gupta SC, Singh R, Asters M, Liu J, Zhang X, Pabbidi MR, Watabe K, Mo YY. Regulation of breast tumorigenesis through acid sensors. Oncogene. 2016 08 04; 35(31):4102-11. PMID: 26686084.
      View in: PubMed
    13. Fahrenholtz CD, Hadimani M, King SB, Torti SV, Singh R. Targeting breast cancer with sugar-coated carbon nanotubes. Nanomedicine (Lond). 2015; 10(16):2481-97. PMID: 26296098.
      View in: PubMed
    14. Swanner J, Mims J, Carroll DL, Akman SA, Furdui CM, Torti SV, Singh RN. Differential cytotoxic and radiosensitizing effects of silver nanoparticles on triple-negative breast cancer and non-triple-negative breast cells. Int J Nanomedicine. 2015; 10:3937-53. PMID: 26185437.
      View in: PubMed
    15. Chapman S, Dobrovolskaia M, Farahani K, Goodwin A, Joshi A, Lee H, Meade T, Pomper M, Ptak K, Rao J, Singh R, Sridhar S, Stern S, Wang A, Weaver JB, Woloschak G, Yang L. Nanoparticles for cancer imaging: The good, the bad, and the promise. Nano Today. 2013 Oct; 8(5):454-460. PMID: 25419228.
      View in: PubMed
    16. Singh R, Torti SV. Carbon nanotubes in hyperthermia therapy. Adv Drug Deliv Rev. 2013 Dec; 65(15):2045-60. PMID: 23933617.
      View in: PubMed
    17. Neal RE, Rossmeisl JH, Robertson JL, Arena CB, Davis EM, Singh RN, Stallings J, Davalos RV. Improved local and systemic anti-tumor efficacy for irreversible electroporation in immunocompetent versus immunodeficient mice. PLoS One. 2013; 8(5):e64559. PMID: 23717630.
      View in: PubMed
    18. Singh R, Alexander P, Burke A, Torti FM, Torti SV . In SH Cho and S Krishnan, Cancer Nanotechnology: Principles and Applications in Radiation Oncology. Carbon Nanotubes for Thermal Therapy. 2013.
    19. Xie B, Singh R, Torti FM, Keblinski P, Torti S. Heat localization for targeted tumor treatment with nanoscale near-infrared radiation absorbers. Phys Med Biol. 2012 Sep 21; 57(18):5765-75. PMID: 22948207.
      View in: PubMed
    20. Burke AR, Singh RN, Carroll DL, Torti FM, Torti SV. Targeting Cancer Stem Cells with Nanoparticle-Enabled Therapies. J Mol Biomark Diagn. 2012 Jul 02; Suppl 8. PMID: 24383043.
      View in: PubMed
    21. Burke AR, Singh RN, Carroll DL, Wood JC, D'Agostino RB, Ajayan PM, Torti FM, Torti SV. The resistance of breast cancer stem cells to conventional hyperthermia and their sensitivity to nanoparticle-mediated photothermal therapy. Biomaterials. 2012 Apr; 33(10):2961-70. PMID: 22245557.
      View in: PubMed
    22. Burke AR, Singh RN, Carroll DL, Owen JD, Kock ND, D'Agostino R, Torti FM, Torti SV. Determinants of the thrombogenic potential of multiwalled carbon nanotubes. Biomaterials. 2011 Sep; 32(26):5970-8. PMID: 21663954.
      View in: PubMed
    23. Singh RP, Farney AC, Rogers J, Gautreaux M, Reeves-Daniel A, Hartmann E, Doares W, Iskandar S, Adams P, Stratta RJ. Hypertension in standard criteria deceased donors is associated with inferior outcomes following kidney transplantation. Clin Transplant. 2011 Jul-Aug; 25(4):E437-46. PMID: 21517998.
      View in: PubMed
    24. Ding X, Singh R, Burke A, Hatcher H, Olson J, Kraft RA, Schmid M, Carroll D, Bourland JD, Akman S, Torti FM, Torti SV. Development of iron-containing multiwalled carbon nanotubes for MR-guided laser-induced thermotherapy. Nanomedicine (Lond). 2011 Oct; 6(8):1341-52. PMID: 21506687.
      View in: PubMed
    25. Neal RE, Singh R, Hatcher HC, Kock ND, Torti SV, Davalos RV. Treatment of breast cancer through the application of irreversible electroporation using a novel minimally invasive single needle electrode. Breast Cancer Res Treat. 2010 Aug; 123(1):295-301. PMID: 20191380.
      View in: PubMed
    26. Hatcher HC, Singh RN, Torti FM, Torti SV. Synthetic and natural iron chelators: therapeutic potential and clinical use. Future Med Chem. 2009 Dec; 1(9):1643-70. PMID: 21425984.
      View in: PubMed
    27. Burke A, Ding X, Singh R, Kraft RA, Levi-Polyachenko N, Rylander MN, Szot C, Buchanan C, Whitney J, Fisher J, Hatcher HC, D'Agostino R, Kock ND, Ajayan PM, Carroll DL, Akman S, Torti FM, Torti SV. Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation. Proc Natl Acad Sci U S A. 2009 Aug 04; 106(31):12897-902. PMID: 19620717.
      View in: PubMed
    28. Singh R, Kostarelos K. Designer adenoviruses for nanomedicine and nanodiagnostics. Trends Biotechnol. 2009 Apr; 27(4):220-9. PMID: 19251331.
      View in: PubMed
    29. Singh R, Tian B, Kostarelos K. Artificial envelopment of nonenveloped viruses: enhancing adenovirus tumor targeting in vivo. FASEB J. 2008 Sep; 22(9):3389-402. PMID: 18556649.
      View in: PubMed
    30. Singh R, Al-Jamal KT, Lacerda L, Kostarelos K. Nanoengineering artificial lipid envelopes around adenovirus by self-assembly. ACS Nano. 2008 May; 2(5):1040-50. PMID: 19206502.
      View in: PubMed
    31. Lacerda L, Soundararajan A, Singh R, Pastorin G, Al-Jamal KT, et al. . Dynamic Imaging of functionalized multi-walled carbon nanotube systemic circulation and urinary excretion. Advanced Materials. 2007; 2(20):225-230.
    32. Singh R, Pantarotto D, Lacerda L, Pastorin G, Klumpp C, Prato M, Bianco A, Kostarelos K. Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc Natl Acad Sci U S A. 2006 Feb 28; 103(9):3357-62. PMID: 16492781.
      View in: PubMed
    33. Singh R, Pantarotto D, McCarthy D, Chaloin O, Hoebeke J, Partidos CD, Briand JP, Prato M, Bianco A, Kostarelos K. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors. J Am Chem Soc. 2005 Mar 30; 127(12):4388-96. PMID: 15783221.
      View in: PubMed
    34. Singh R, McCarthy D, Kostarelos K. . Surface modification of adenovirus by zwitterionic (DMPC:Chol) liposomes can up- or down-regulate adenoviral gene transfer efficiency in vitro. Journal of drug delivery science and technology. 2005; 15(4):289-294.
    35. Pantarotto D, Singh R, McCarthy D, Erhardt M, Briand JP, Prato M, Kostarelos K, Bianco A. Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew Chem Int Ed Engl. 2004 Oct 04; 43(39):5242-6. PMID: 15455428.
      View in: PubMed
    36. Worgall S, Kikuchi T, Singh R, Martushova K, Lande L, Crystal RG. Protection against pulmonary infection with Pseudomonas aeruginosa following immunization with P. aeruginosa-pulsed dendritic cells. Infect Immun. 2001 Jul; 69(7):4521-7. PMID: 11401995.
      View in: PubMed
    37. Kikuchi T, Worgall S, Singh R, Moore MA, Crystal RG. Dendritic cells genetically modified to express CD40 ligand and pulsed with antigen can initiate antigen-specific humoral immunity independent of CD4+ T cells. Nat Med. 2000 Oct; 6(10):1154-9. PMID: 11017148.
      View in: PubMed
    38. Kaner RJ, Ladetto JV, Singh R, Fukuda N, Matthay MA, Crystal RG. Lung overexpression of the vascular endothelial growth factor gene induces pulmonary edema. Am J Respir Cell Mol Biol. 2000 Jun; 22(6):657-64. PMID: 10837361.
      View in: PubMed
    39. Worgall S, Worgall TS, Kostarelos K, Singh R, Leopold PL, Hackett NR, Crystal RG. Free cholesterol enhances adenoviral vector gene transfer and expression in CAR-deficient cells. Mol Ther. 2000 Jan; 1(1):39-48. PMID: 10933910.
      View in: PubMed
    40. Worgall S, Bezdicek P, Kim MK, Park JG, Singh R, Christofidou-Solomidou M, Prince A, Kovesdi I, Schreiber AD, Crystal RG. Augmentation of pulmonary host defense against Pseudomonas by FcgammaRIIA cDNA transfer to the respiratory epithelium. J Clin Invest. 1999 Aug; 104(4):409-18. PMID: 10449433.
      View in: PubMed
    41. Worgall S, Connor R, Kaner RJ, Fenamore E, Sheridan K, Singh R, Crystal RG. Expression and use of human immunodeficiency virus type 1 coreceptors by human alveolar macrophages. J Virol. 1999 Jul; 73(7):5865-74. PMID: 10364338.
      View in: PubMed
    42. Kaner RJ, Worgall S, Leopold PL, Stolze E, Milano E, Hidaka C, Ramalingam R, Hackett NR, Singh R, Bergelson J, Finberg R, Falck-Pedersen E, Crystal RG. Modification of the genetic program of human alveolar macrophages by adenovirus vectors in vitro is feasible but inefficient, limited in part by the low level of expression of the coxsackie/adenovirus receptor. Am J Respir Cell Mol Biol. 1999 Mar; 20(3):361-70. PMID: 10030833.
      View in: PubMed
    43. Worgall S, Singh R, Leopold PL, Kaner RJ, Hackett NR, Topf N, Moore MA, Crystal RG. Selective expansion of alveolar macrophages in vivo by adenovirus-mediated transfer of the murine granulocyte-macrophage colony-stimulating factor cDNA. Blood. 1999 Jan 15; 93(2):655-66. PMID: 9885228.
      View in: PubMed
    44. Suzuki M, Singh R, Moore MA, Song WR, Crystal RG. Similarity of strain- and route-dependent murine responses to an adenovirus vector using the homologous thrombopoietin cDNA as the reporter genes. Hum Gene Ther. 1998 May 20; 9(8):1223-31. PMID: 9625262.
      View in: PubMed
    45. Suzuki M, Singh RN, Crystal RG. Pharmacological expression in rat hepatocytes of a gene transferred by an adenovirus vector enabled by a chimeric promoter containing multiple cyclic adenosine monophosphate response elements. Hepatology. 1998 Jan; 27(1):160-5. PMID: 9425932.
      View in: PubMed
    46. Suzuki M, Singh RN, Crystal RG. Ability of a chimeric cAMP-responsive promoter to confer pharmacologic control of CFTR cDNA expression and cAMP-mediated Cl- secretion. Gene Ther. 1997 Nov; 4(11):1195-201. PMID: 9425443.
      View in: PubMed
    47. Cannizzo SJ, Frey BM, Raffi S, Moore MA, Eaton D, Suzuki M, Singh R, Mack CA, Crystal RG. Augmentation of blood platelet levels by intratracheal administration of an adenovirus vector encoding human thrombopoietin cDNA. Nat Biotechnol. 1997 Jun; 15(6):570-3. PMID: 9181581.
      View in: PubMed
    48. Suzuki M, Singh RN, Crystal RG. Regulatable promoters for use in gene therapy applications: modification of the 5'-flanking region of the CFTR gene with multiple cAMP response elements to support basal, low-level gene expression that can be upregulated by exogenous agents that raise intracellular levels of cAMP. Hum Gene Ther. 1996 Oct 01; 7(15):1883-93. PMID: 8894680.
      View in: PubMed
    Singh's Networks
    Click the "See All" links for more information and interactive visualizations!
    Concepts Expand Description
    _
    Co-Authors Expand Description
    _
    Similar People Expand Description
    _
    Same Department Expand Description
    Physical Neighbors Expand Description
    _