First Header Logo Second Header Logo

Connection

Leslie Poole to Molecular Sequence Data

This is a "connection" page, showing publications Leslie Poole has written about Molecular Sequence Data.
Connection Strength

0.903
  1. Reeves SA, Parsonage D, Nelson KJ, Poole LB. Kinetic and thermodynamic features reveal that Escherichia coli BCP is an unusually versatile peroxiredoxin. Biochemistry. 2011 Oct 18; 50(41):8970-81.
    View in: PubMed
    Score: 0.098
  2. Parsonage D, Reeves SA, Karplus PA, Poole LB. Engineering of fluorescent reporters into redox domains to monitor electron transfers. Methods Enzymol. 2010; 474:1-21.
    View in: PubMed
    Score: 0.090
  3. Parsonage D, Desrosiers DC, Hazlett KR, Sun Y, Nelson KJ, Cox DL, Radolf JD, Poole LB. Broad specificity AhpC-like peroxiredoxin and its thioredoxin reductant in the sparse antioxidant defense system of Treponema pallidum. Proc Natl Acad Sci U S A. 2010 Apr 06; 107(14):6240-5.
    View in: PubMed
    Score: 0.088
  4. Nelson KJ, Parsonage D, Hall A, Karplus PA, Poole LB. Cysteine pK(a) values for the bacterial peroxiredoxin AhpC. Biochemistry. 2008 Dec 02; 47(48):12860-8.
    View in: PubMed
    Score: 0.080
  5. Poole LB. Bacterial defenses against oxidants: mechanistic features of cysteine-based peroxidases and their flavoprotein reductases. Arch Biochem Biophys. 2005 Jan 01; 433(1):240-54.
    View in: PubMed
    Score: 0.061
  6. Baker LM, Poole LB. Catalytic mechanism of thiol peroxidase from Escherichia coli. Sulfenic acid formation and overoxidation of essential CYS61. J Biol Chem. 2003 Mar 14; 278(11):9203-11.
    View in: PubMed
    Score: 0.053
  7. Reynolds CM, Meyer J, Poole LB. An NADH-dependent bacterial thioredoxin reductase-like protein in conjunction with a glutaredoxin homologue form a unique peroxiredoxin (AhpC) reducing system in Clostridium pasteurianum. Biochemistry. 2002 Feb 12; 41(6):1990-2001.
    View in: PubMed
    Score: 0.050
  8. Baker LM, Raudonikiene A, Hoffman PS, Poole LB. Essential thioredoxin-dependent peroxiredoxin system from Helicobacter pylori: genetic and kinetic characterization. J Bacteriol. 2001 Mar; 183(6):1961-73.
    View in: PubMed
    Score: 0.047
  9. Poole LB, Godzik A, Nayeem A, Schmitt JD. AhpF can be dissected into two functional units: tandem repeats of two thioredoxin-like folds in the N-terminus mediate electron transfer from the thioredoxin reductase-like C-terminus to AhpC. Biochemistry. 2000 Jun 6; 39(22):6602-15.
    View in: PubMed
    Score: 0.045
  10. Harper AF, Leuthaeuser JB, Babbitt PC, Morris JH, Ferrin TE, Poole LB, Fetrow JS. An Atlas of Peroxiredoxins Created Using an Active Site Profile-Based Approach to Functionally Relevant Clustering of Proteins. PLoS Comput Biol. 2017 02; 13(2):e1005284.
    View in: PubMed
    Score: 0.036
  11. Perkins A, Gretes MC, Nelson KJ, Poole LB, Karplus PA. Mapping the active site helix-to-strand conversion of CxxxxC peroxiredoxin Q enzymes. Biochemistry. 2012 Sep 25; 51(38):7638-50.
    View in: PubMed
    Score: 0.026
  12. Cho SH, Parsonage D, Thurston C, Dutton RJ, Poole LB, Collet JF, Beckwith J. A new family of membrane electron transporters and its substrates, including a new cell envelope peroxiredoxin, reveal a broadened reductive capacity of the oxidative bacterial cell envelope. mBio. 2012; 3(2).
    View in: PubMed
    Score: 0.025
  13. Wani R, Qian J, Yin L, Bechtold E, King SB, Poole LB, Paek E, Tsang AW, Furdui CM. Isoform-specific regulation of Akt by PDGF-induced reactive oxygen species. Proc Natl Acad Sci U S A. 2011 Jun 28; 108(26):10550-5.
    View in: PubMed
    Score: 0.024
  14. Hall A, Nelson K, Poole LB, Karplus PA. Structure-based insights into the catalytic power and conformational dexterity of peroxiredoxins. Antioxid Redox Signal. 2011 Aug 01; 15(3):795-815.
    View in: PubMed
    Score: 0.024
  15. Nelson KJ, Knutson ST, Soito L, Klomsiri C, Poole LB, Fetrow JS. Analysis of the peroxiredoxin family: using active-site structure and sequence information for global classification and residue analysis. Proteins. 2011 Mar; 79(3):947-64.
    View in: PubMed
    Score: 0.023
  16. Yuan Y, Knaggs M, Poole L, Fetrow J, Salsbury F. Conformational and oligomeric effects on the cysteine pK(a) of tryparedoxin peroxidase. J Biomol Struct Dyn. 2010 Aug; 28(1):51-70.
    View in: PubMed
    Score: 0.023
  17. Hall A, Sankaran B, Poole LB, Karplus PA. Structural changes common to catalysis in the Tpx peroxiredoxin subfamily. J Mol Biol. 2009 Nov 06; 393(4):867-81.
    View in: PubMed
    Score: 0.021
  18. Hutson SM, Poole LB, Coles S, Conway ME. Redox regulation and trapping sulfenic acid in the peroxide-sensitive human mitochondrial branched chain aminotransferase. Methods Mol Biol. 2008; 476:139-52.
    View in: PubMed
    Score: 0.019
  19. Panmanee W, Vattanaviboon P, Poole LB, Mongkolsuk S. Novel organic hydroperoxide-sensing and responding mechanisms for OhrR, a major bacterial sensor and regulator of organic hydroperoxide stress. J Bacteriol. 2006 Feb; 188(4):1389-95.
    View in: PubMed
    Score: 0.017
  20. Wood ZA, Poole LB, Karplus PA. Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science. 2003 Apr 25; 300(5619):650-3.
    View in: PubMed
    Score: 0.014
  21. Conway ME, Yennawar N, Wallin R, Poole LB, Hutson SM. Human mitochondrial branched chain aminotransferase: structural basis for substrate specificity and role of redox active cysteines. Biochim Biophys Acta. 2003 Apr 11; 1647(1-2):61-5.
    View in: PubMed
    Score: 0.014
  22. Conway ME, Yennawar N, Wallin R, Poole LB, Hutson SM. Identification of a peroxide-sensitive redox switch at the CXXC motif in the human mitochondrial branched chain aminotransferase. Biochemistry. 2002 Jul 23; 41(29):9070-8.
    View in: PubMed
    Score: 0.013
  23. Wood ZA, Poole LB, Hantgan RR, Karplus PA. Dimers to doughnuts: redox-sensitive oligomerization of 2-cysteine peroxiredoxins. Biochemistry. 2002 Apr 30; 41(17):5493-504.
    View in: PubMed
    Score: 0.013
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.