Leslie Poole to Molecular Sequence Data
This is a "connection" page, showing publications Leslie Poole has written about Molecular Sequence Data.
Connection Strength
0.867
-
Reeves SA, Parsonage D, Nelson KJ, Poole LB. Kinetic and thermodynamic features reveal that Escherichia coli BCP is an unusually versatile peroxiredoxin. Biochemistry. 2011 Oct 18; 50(41):8970-81.
Score: 0.094
-
Parsonage D, Reeves SA, Karplus PA, Poole LB. Engineering of fluorescent reporters into redox domains to monitor electron transfers. Methods Enzymol. 2010; 474:1-21.
Score: 0.086
-
Parsonage D, Desrosiers DC, Hazlett KR, Sun Y, Nelson KJ, Cox DL, Radolf JD, Poole LB. Broad specificity AhpC-like peroxiredoxin and its thioredoxin reductant in the sparse antioxidant defense system of Treponema pallidum. Proc Natl Acad Sci U S A. 2010 Apr 06; 107(14):6240-5.
Score: 0.085
-
Nelson KJ, Parsonage D, Hall A, Karplus PA, Poole LB. Cysteine pK(a) values for the bacterial peroxiredoxin AhpC. Biochemistry. 2008 Dec 02; 47(48):12860-8.
Score: 0.077
-
Poole LB. Bacterial defenses against oxidants: mechanistic features of cysteine-based peroxidases and their flavoprotein reductases. Arch Biochem Biophys. 2005 Jan 01; 433(1):240-54.
Score: 0.059
-
Baker LM, Poole LB. Catalytic mechanism of thiol peroxidase from Escherichia coli. Sulfenic acid formation and overoxidation of essential CYS61. J Biol Chem. 2003 Mar 14; 278(11):9203-11.
Score: 0.051
-
Reynolds CM, Meyer J, Poole LB. An NADH-dependent bacterial thioredoxin reductase-like protein in conjunction with a glutaredoxin homologue form a unique peroxiredoxin (AhpC) reducing system in Clostridium pasteurianum. Biochemistry. 2002 Feb 12; 41(6):1990-2001.
Score: 0.048
-
Baker LM, Raudonikiene A, Hoffman PS, Poole LB. Essential thioredoxin-dependent peroxiredoxin system from Helicobacter pylori: genetic and kinetic characterization. J Bacteriol. 2001 Mar; 183(6):1961-73.
Score: 0.045
-
Poole LB, Godzik A, Nayeem A, Schmitt JD. AhpF can be dissected into two functional units: tandem repeats of two thioredoxin-like folds in the N-terminus mediate electron transfer from the thioredoxin reductase-like C-terminus to AhpC. Biochemistry. 2000 Jun 6; 39(22):6602-15.
Score: 0.043
-
Harper AF, Leuthaeuser JB, Babbitt PC, Morris JH, Ferrin TE, Poole LB, Fetrow JS. An Atlas of Peroxiredoxins Created Using an Active Site Profile-Based Approach to Functionally Relevant Clustering of Proteins. PLoS Comput Biol. 2017 02; 13(2):e1005284.
Score: 0.034
-
Perkins A, Gretes MC, Nelson KJ, Poole LB, Karplus PA. Mapping the active site helix-to-strand conversion of CxxxxC peroxiredoxin Q enzymes. Biochemistry. 2012 Sep 25; 51(38):7638-50.
Score: 0.025
-
Cho SH, Parsonage D, Thurston C, Dutton RJ, Poole LB, Collet JF, Beckwith J. A new family of membrane electron transporters and its substrates, including a new cell envelope peroxiredoxin, reveal a broadened reductive capacity of the oxidative bacterial cell envelope. mBio. 2012; 3(2).
Score: 0.024
-
Wani R, Qian J, Yin L, Bechtold E, King SB, Poole LB, Paek E, Tsang AW, Furdui CM. Isoform-specific regulation of Akt by PDGF-induced reactive oxygen species. Proc Natl Acad Sci U S A. 2011 Jun 28; 108(26):10550-5.
Score: 0.023
-
Hall A, Nelson K, Poole LB, Karplus PA. Structure-based insights into the catalytic power and conformational dexterity of peroxiredoxins. Antioxid Redox Signal. 2011 Aug 01; 15(3):795-815.
Score: 0.023
-
Nelson KJ, Knutson ST, Soito L, Klomsiri C, Poole LB, Fetrow JS. Analysis of the peroxiredoxin family: using active-site structure and sequence information for global classification and residue analysis. Proteins. 2011 Mar; 79(3):947-64.
Score: 0.022
-
Yuan Y, Knaggs M, Poole L, Fetrow J, Salsbury F. Conformational and oligomeric effects on the cysteine pK(a) of tryparedoxin peroxidase. J Biomol Struct Dyn. 2010 Aug; 28(1):51-70.
Score: 0.022
-
Hall A, Sankaran B, Poole LB, Karplus PA. Structural changes common to catalysis in the Tpx peroxiredoxin subfamily. J Mol Biol. 2009 Nov 06; 393(4):867-81.
Score: 0.020
-
Hutson SM, Poole LB, Coles S, Conway ME. Redox regulation and trapping sulfenic acid in the peroxide-sensitive human mitochondrial branched chain aminotransferase. Methods Mol Biol. 2008; 476:139-52.
Score: 0.018
-
Panmanee W, Vattanaviboon P, Poole LB, Mongkolsuk S. Novel organic hydroperoxide-sensing and responding mechanisms for OhrR, a major bacterial sensor and regulator of organic hydroperoxide stress. J Bacteriol. 2006 Feb; 188(4):1389-95.
Score: 0.016
-
Wood ZA, Poole LB, Karplus PA. Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science. 2003 Apr 25; 300(5619):650-3.
Score: 0.013
-
Conway ME, Yennawar N, Wallin R, Poole LB, Hutson SM. Human mitochondrial branched chain aminotransferase: structural basis for substrate specificity and role of redox active cysteines. Biochim Biophys Acta. 2003 Apr 11; 1647(1-2):61-5.
Score: 0.013
-
Conway ME, Yennawar N, Wallin R, Poole LB, Hutson SM. Identification of a peroxide-sensitive redox switch at the CXXC motif in the human mitochondrial branched chain aminotransferase. Biochemistry. 2002 Jul 23; 41(29):9070-8.
Score: 0.012
-
Wood ZA, Poole LB, Hantgan RR, Karplus PA. Dimers to doughnuts: redox-sensitive oligomerization of 2-cysteine peroxiredoxins. Biochemistry. 2002 Apr 30; 41(17):5493-504.
Score: 0.012